浏览全部资源
扫码关注微信
1. 成都信息工程学院 计算机学院,四川 成都 610225
2. 西南民族大学 计算机科学与技术学院,四川 成都 610041
3. 西南交通大学 计算机科学与技术学院,四川 成都 610031
[ "吴涛(1984-),女,山东曲阜人,博士,成都信息工程学院讲师,主要研究方向为进化算法、群体智能算法。" ]
[ "陈曦(1984-),男,重庆人,博士,西南民族大学讲师,主要研究方向为计算机网络、Web服务。" ]
[ "严余松(1963-),男,四川简阳人,西南交通大学教授、博士生导师,主要研究方向为交通信息网络、交通系统仿真和物流信息技术。" ]
网络出版日期:2015-03,
纸质出版日期:2015-03-25
移动端阅览
吴涛, 陈曦, 严余松. 三元相关性量子行为粒子群优化算法研究[J]. 通信学报, 2015,36(3):208-215.
Tao WU, Xi CHEN, Yu-song YAN. Study of the ternary correlation quantum-behaved PSO algorithm[J]. Journal of communications, 2015, 36(3): 208-215.
吴涛, 陈曦, 严余松. 三元相关性量子行为粒子群优化算法研究[J]. 通信学报, 2015,36(3):208-215. DOI: 10.11959/j.issn.1000-436x.2015076.
Tao WU, Xi CHEN, Yu-song YAN. Study of the ternary correlation quantum-behaved PSO algorithm[J]. Journal of communications, 2015, 36(3): 208-215. DOI: 10.11959/j.issn.1000-436x.2015076.
为了提高QPSO算法的收敛性能,在对随机因子进行分析的基础上提出了三元相关性QPSO(TC-QPSO
ternary correlation QPSO)算法。该算法使用正态Copula函数建立了粒子对自身经验信息、群体共享信息以及粒子当前位置与群体平均最好位置的距离信息之间的内在认知和联系,并利用Cholesky平方根公式给出了三元相关因子的生成方法。对测试函数的仿真结果证明,当三元相关因子u与r1或r2之间存在负线性相关关系时,TC-QPSO算法可以获得比标准QPSO算法更好的优化性能。
In order to more effectively utilize existing information and improve QPSO's (quantum-behaved particle swarm optimization) convergence performance
the ternary correlation QPSO (TC-QPSO) algorithm was proposed based on the analysis of the random factors in location formula. The novel algorithm changed the information independent ran-dom processing method of standard QPSO and established internal relations during particles' own experience information
group sharing information and the distance from the particles' current location to the population mean best position using normal copula functions.Then
the method of generating ternary correlation factors was given by using the Cholesky square root formula. The simulation results of the test functions showed that TC-QPSO algorithm outperforms the stan-dard QPSO algorithm in terms of optimization results
given that the negative linear correlation exists betweenu and r1 or u andr2.
KENNEDY J , EBERHART R . Particle swarm optimization [A ] . Proceedings of the IEEE International Conference on Neural Networks [C ] . Perth , 1995 . 1942 - 1948 .
BERGH F V D . An Analysis of Particle Swarm Optimizers [D ] . South Africa: University of Pretoria , 2002 .
孙俊 , 方伟 , 吴小俊 等 . 量子行为粒子群优化:原理及其应用 [M ] . 北京 : 清华大学出版社 , 2011 .
SUN J , FANG W , WU X J , et al . Quantum-behaved Particle Swarm Optimization Principle and its Application [M ] . Beijing : Tsinghua University Press , 2011 .
MIKKI S , KISHK A . Investigation of the quantum particle swarm optimization technique for electromagnetic applications [A ] . IEEE International Symposium on Antennas and Propagation Society [C ] . 2005 . 45 - 48 .
MIKKI S , KISHK A . Quantum particle swarm optimization for electromagnetics [J ] . IEEE Transactions on Antennas and Propagation , 2006 , 54 ( 10 ): 2764 - 2775 .
李盼池 , 王海英 , 宋考平 等 . 量子势阱粒子群优化算法的改进研究 [J ] . 物理学报 , 2012 , 61 ( 06 ): 19 - 28 .
LI P C , WANG H Y , SONG K P , et al . Research on the improvement of quantum potential well-based particle swarm optimization algorithm [J ] . Acta Physica Sinica , 2012 , 61 ( 06 ): 19 - 28 .
孙俊 . 量子行为粒子群优化算法 [D ] . 江苏:江南大学 , 2009 .
SUN J . Particle Swarm Optimization With Particles Having Quantum Behavior [D ] . Jiangsu: Jiangnan University , 2009 .
CLERC M , KENNEDY J . The particle swarm-explosion, stability, and convergence in a multidimensional complex space [J ] . IEEE Transactions on Evolutionary Computation , 2002 , 6 ( 1 ): 58 - 73 .
郭文忠 , 陈国龙 . 离散粒子群优化算法及其应用 [M ] . 北京 : 清华大学出版社 , 2012 .
GUO W Z , CHEN G L . Discrete Particle Swarm Optimization Algorithm and its Application [M ] . Beijing : Tsinghua University Press , 2012 .
ARUMUGAM M S , RAO M V C , TAN A W C . A novel and effective particle swarm optimization like algorithm with extrapolation technique [J ] . Applied Soft Computing , 2009 , 9 ( 1 ): 308 - 320 .
申元霞 . 相关性粒子群优化模型及其应用研究 [D ] . 成都:西南交通大学 , 2010 .
SHEN Y X . Reaearch on Corrlative Particle Swarm Optimization Model and its Application [D ] . Chengdu: Southwest Jiaotong University , 2010 .
韦艳华 , 张世英 . Copula 理论及其在金融分析上的应用 [M ] . 北京 : 清华大学出版社 , 2008 .
WEI Y H , ZHANG S Y . Copula Theory and Its Applications in Financial Analysis [M ] . Beijing : Tsinghua University Press , 2008 .
CHERUBINI U , LUCIANO E , VECCHIATO W . Copula Methods in Finance [M ] . England: John Wiley&Sons Ltd , 2004 .
SKLAR A . Fonctions de Répartition à N Dimensions et Leurs Marges [D ] . Paris: Université Paris , 1959 .
SKLAR A . Random variables, distribution functions, and copulas: A personal look backward and forward [J ] . Lecture Notes-Monograph Series , 1996 , 28 : 1 - 14 .
NELSEN R B . An Introduction to Copulas [M ] . New York: Springer , 2006 .
0
浏览量
439
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构