浏览全部资源
扫码关注微信
1. 中国科学院 计算技术研究所,北京 100190
2. 中国科学院 信息工程研究所,北京 100093
[ "尚燕敏(1982-),女,河北定州人,中国科学院博士生,主要研究方向为用户行为挖掘。" ]
[ "张鹏(1981-),男,江西南昌人,博士,中国科学院副研究员,主要研究方向为数据流挖掘。" ]
[ "曹亚男(1985-),女,山东德州人,博士,中国科学院助理研究员,主要研究方向为知识发现。" ]
网络出版日期:2015-02,
纸质出版日期:2015-02-25
移动端阅览
尚燕敏, 张鹏, 曹亚男. 融合链接拓扑结构和用户兴趣的朋友推荐方法[J]. 通信学报, 2015,36(2):117-125.
Yan-min SHANG, Peng ZHANG, Ya-nan CAO. New interest-sensitive and network-sensitive method for user recommendation[J]. Journal on communications, 2015, 36(2): 117-125.
尚燕敏, 张鹏, 曹亚男. 融合链接拓扑结构和用户兴趣的朋友推荐方法[J]. 通信学报, 2015,36(2):117-125. DOI: 10.11959/j.issn.1000-436x.2015040.
Yan-min SHANG, Peng ZHANG, Ya-nan CAO. New interest-sensitive and network-sensitive method for user recommendation[J]. Journal on communications, 2015, 36(2): 117-125. DOI: 10.11959/j.issn.1000-436x.2015040.
提出一种新的朋友推荐方法,该方法同时使用用户兴趣和朋友关系这2种因素来为目标用户推荐朋友,对PageRank算法进行改进,提出一种能同时融合上述2种因素的Topic_Friend_PageRank(TFPR)模型。首先,采用LDA(latent Dirichlet allocation)分析用户发布的消息内容,将用户表示为若干主题上的分布,从而建模用户的兴趣。接下来,使用加权的 PageRank 算法建模用户在整个链接拓扑中的重要程度和用户之间朋友关系的相似性。最后根据主题感知的PageRank思想,将用户兴趣融入前面提到的加权PageRank中,形成同时融合用户兴趣和朋友关系的TFPR模型。采用新浪微博数据验证所提模型的性能,实验证明该模型能同时得到较高的准确率和召回率。
A new hybrid approach by incorporatin gusers’ interests and users’ friendships together to recommend new friends for target users is proposed.A variation of PageRank—Topic_Friend_PageRank(TFPR) is proposed
which can consider user interests and user friends at same time.Firstly
proposed method uses latent Dirichlet allocation (LDA) to model users’ interests
and weighted-PageRank algorithm to model users’ friendship network
and then merge these two factors into TFPR.This hybrid method models users’ interests and users’ friendships at the same time
and wedemonstrate the effectiveness of proposed hybrid model by using some social network datasets.
NEWMAN M E J . The structure of scientific collaborationnetworks [A ] . Proceedings of the National Academy of Sciences [C ] . USA , 2001 . 404 - 409 .
LEO K . A new status index derived from sociometricanalysis [J ] . Psychometrika , 1953 , 18 ( 1 ): 39 - 43 .
GLEN J , JENNIFER W . SimRank:a measure of structural-context similarity [A ] . Proceedings of the ACMSIGKDD International Conference on Knowledge Discoveryand Data Mining [C ] . New Orleans,LA,USA , 2002 . 538 - 543 .
LADA A A , EYTAN A . Friends and neighbors on the web [J ] . Social Networks , 2003 , 25 ( 3 ): 211 - 230 .
JORN D , HOLGER E, . STEFAN B.Emergence of a small world from local interactions:modeling acquaintance networks [J ] . Physical Review Letters , 2002 , 88 : 128701 .
EMILY M J , MICHELLE G , NEWMAN M E J . The structure of growing social networks [J ] . Physical Review Letters E , 2001 , 64 : 046132 .
NEWMAN M E J . Clustering and preferential attachment in growing networks [J ] . Physical Review Letters E , 2001 , 64 : 025102 .
GERARD S , MICHAEL J . Introduction to Modern Information Retrieval [M ] . McGraw-Hill , 1983 .
GRANOVETTER M . The strength of weak ties:a network theoryrevisited [J ] . Sociological Theory , 1983 , 1 : 201 - 233 .
MARCO P , SIVA G . Investigating topic models for social media user recommendation [A ] . WWW2011 [C ] . Hyderabad,India , 2011 . 101 - 102 .
KRITI P , JACOB E , SHAY C , et al . Social links from latent topics in microblogs [A ] . Proceedings of the NAACL HLT 2010 Workshop onComputational Linguistics in a World of Social Media [C ] . Los Angeles,California , 2010 . 19 - 20 .
YIN Z J , MANISH G , TIM W et al . LINKREC:A unified framework for link recommendation with user attributes and graph structure [A ] . WWW 2010 [C ] . North Carolina,USA , 2000 . 1211 - 1212 .
ROHIT P , DOINA C . Predicting friendship linksin social networks using a topic modeling approach [A ] . PAKDD2011 [C ] . 2011 . 75 - 86 .
BLEI D , NG Y A , JORDAN I M . Latent Dirichlet allocation [J ] . Journal of Machine Learning Research 3 , 2003 : 993 - 1022 .
DANIELE Q , HARRY A , JON C . TweetLDA:supervised topic classification and link prediction in Twitter [A ] . WebSci2012 [C ] . Evaston,Illinois USA , 2012 . 22 - 24 .
LAWRENCE P . The PageRank citation ranking:bring order to Web [J ] . Stanford Inforlob , 1998 .
LARS B , JURE L . Supervised random walks:predicting and recommending links in social networks [A ] . WSDM’11 [C ] . Hong Kong,China , 2011 . 9 - 12 .
TAHER H , HAVELIWALA . Topic sensitive PageRank [A ] . WWW 2002 [C ] . Hawaii,USA , 2011 . 7 - 11 .
0
浏览量
671
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构