浏览全部资源
扫码关注微信
1. 吉林大学计算机科学与技术学院,吉林 长春130012
2. 吉林大学符号计算与知识工程教育部重点实验室,吉林 长春 130012
3. 吉林大学化学学院,吉林 长春130012
[ "李永豪(1992- ),男,河南安阳人,吉林大学博士生,主要研究方向为多标签学习、特征选择。" ]
[ "胡亮(1968- ),男,吉林长春人,博士,吉林大学教授、博士生导师,主要研究方向为人工智能和分布式计算。" ]
[ "张平(1991- ),女,河北石家庄人,吉林大学博士生,主要研究方向为多标签学习、特征选择。" ]
[ "高万夫(1990- ),男,吉林辽源人,博士,吉林大学讲师,主要研究方向为机器学习、特征选择、多标签学习。" ]
网络出版日期:2020-12,
纸质出版日期:2020-12-25
移动端阅览
李永豪, 胡亮, 张平, 等. 基于动态图拉普拉斯的多标签特征选择[J]. 通信学报, 2020,41(12):47-59.
Yonghao LI, Liang HU, Ping ZHANG, et al. Multi-label feature selection based on dynamic graph Laplacian[J]. Journal on communications, 2020, 41(12): 47-59.
李永豪, 胡亮, 张平, 等. 基于动态图拉普拉斯的多标签特征选择[J]. 通信学报, 2020,41(12):47-59. DOI: 10.11959/j.issn.1000-436X.2020244.
Yonghao LI, Liang HU, Ping ZHANG, et al. Multi-label feature selection based on dynamic graph Laplacian[J]. Journal on communications, 2020, 41(12): 47-59. DOI: 10.11959/j.issn.1000-436X.2020244.
针对基于图的多标签特征选择方法忽略图拉普拉斯矩阵的动态变化,且利用逻辑标签来指导特征选择过程而丢失标签信息等问题,提出了一种基于动态图拉普拉斯矩阵和实值标签的多标签特征选择方法。该方法利用特征矩阵的稳健低维空间构造动态图拉普拉斯矩阵,并利用该稳健低维空间作为实值标签空间,进一步使用流形约束和非负约束将逻辑标签转化为实值标签,以此来解决上述问题。所提方法与3种多标签特征选择方法在9个多标签基准数据集上进行了对比实验,实验结果表明,所提多标签特征选择方法可得到高质量的特征子集,并且能获得很好的分类表现。
In view of the problems that graph-based multi-label feature selection methods ignore the dynamic change of graph Laplacian matrix
as well as such methods employ logical-value labels to guide feature selection process and loses label information
a multi-label feature selection method based on both dynamic graph Laplacian matrix and real-value labels was proposed.The robust low-dimensional space of feature matrix was used to construct a dynamic graph Laplacian matrix
and the robust low-dimensional space was used as the real-value label space.Furthermore
manifold and non-negative constraints were adopted to transform logical labels into real-valued labels to address the issues mentioned above.The proposed method was compared to three multi-label feature selection methods on nine multi-label benchmark data sets in experiments.The experimental results demonstrate that the proposed multi-label feature selection method can obtain the higher quality feature subset and achieve good classification performance.
GUI J , SUN Z N , JIS W , et al . Feature selection based on structured sparsity:a comprehensive study [J ] . IEEE Transactions on Neural Networks and Learning Systems , 2016 , 28 ( 7 ): 1 - 18 .
BOLON C N , SANCHEZ M N , ALONSO B A , et al . A review of microarray datasets and applied feature selection methods [J ] . Information Sciences , 2014 , 282 : 111 - 135 .
ZHANG M L , ZHOU Z H . A review on multi-label learning algorithms [J ] . IEEE Transactions on Knowledge and data Engineering , 2014 , 26 ( 8 ): 1819 - 1837 .
TSOUMAKAS G , KATAKIS I , VLAHAVAS I . Mining multi-label data [M ] . Berlin:Springer . 2009 : 667 - 685 .
TSOUMAKAS G , KATAKIS I . Multi-label classification:an overview [J ] . International Journal of Data Warehousing and Mining , 2007 , 3 ( 3 ): 1 - 13 .
KASHEF S , NEZAMABADI-POUR H , NIKPOUR B . Multilabel feature selection:a comprehensive review and guiding experiments [J ] . Wiley Interdisciplinary Reviews Data Mining & Knowledge Discovery , 2018 , 8 ( 2 ): 12 - 40 .
刘慧婷 , 冷新杨 , 王利利 , 等 . 联合嵌入式多标签分类算法 [J ] . 自动化学报 , 2019 , 45 ( 10 ): 1969 - 1982 .
LIU H T , LENG X Y , WANG L L , et al . A joint embedded multi-label classification algorithm [J ] . Acta Automatica Sinica , 2019 , 45 ( 10 ): 1969 - 1982 .
LI J , CHENG K , WANG S , et al . Feature selection:a data perspective [J ] . ACM Computing Surveys , 2018 , 50 ( 6 ): 1 - 45 .
SAEYS Y , INZA I , LARRAÑAGA P . A review of feature selection techniques in bioinformatics [J ] . Bioinformatics , 2007 , 23 ( 19 ): 2507 - 2517 .
李占山 , 刘兆赓 . 基于 XGBoost 的特征选择算法 [J ] . 通信学报 , 2019 , 40 ( 10 ): 101 - 108 .
LI Z S , LIU Z G . Feature selection algorithm based on XGBoost [J ] . Journal on Communications , 2019 , 40 ( 10 ): 101 - 108 .
ZHANG P , LIU G X , GAO W F . Distinguishing two types of labels for multi-label feature selection [J ] . Pattern Recognition , 2019 , 95 ( 1 ): 72 - 82 .
CAI Z , ZHU W . Multi-label feature selection via feature manifold learning and sparsity regularization [J ] . International Journal of Machine Learning & Cybernetics , 2018 , 9 ( 8 ): 1321 - 1334 .
RODRIGUES D , PEREIRA L A , NAKAMURA R Y , et al . A wrapper approach for feature selection based on bat algorithm and optimum-path forest [J ] . Expert Systems with Applications , 2014 , 41 ( 5 ): 2250 - 2258 .
张俐 , 王枞 . 基于最大相关最小冗余联合互信息的多标签特征选择算法 [J ] . 通信学报 , 2018 , 39 ( 5 ): 115 - 126 .
ZHANG L , WANG C . Multi-label feature selection algorithm based on joint mutual information of max-relevance and min-redundancy [J ] . Journal on Communications , 2018 , 39 ( 5 ): 115 - 126 .
ZHANG J , LUO Z , LI C , et al . Manifold regularized discriminative feature selection for multi-label learning [J ] . Pattern Recognition , 2019 , 95 ( 1 ): 136 - 150 .
HUANG J , NIE F P , HUANG H , et al . Robust manifold nonnegative matrix factorization [J ] . ACM Transactions on Knowledge Discovery from Data , 2014 , 8 ( 3 ): 1 - 21 .
JIAN L , LI J , SHU K , et al . Multi-label informed feature selection [C ] // Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence . Palo Alto:AAAI Press , 2016 : 1627 - 1633 .
NIE F P , HUANG H , CAI X , et al . Efficient and robust feature selection via joint ℓ2,1-norms minimization [C ] // Proceedings of the Advances in neural Information Processing Systems . Massachusetts:MIT Press , 2010 : 1813 - 1821 .
CHANG X , NIE F P , YANG Y , et al . A convex formulation for semi-supervised multi-label feature selection [C ] // Proceedings of the National Conference on Artificial Intelligence . Palo Alto:AAAI Press , 2014 : 1171 - 1177 .
BOUTELL M R , LUO J , SHEN X , et al . Learning multi-label scene classification [J ] . Pattern Recognition , 2004 , 37 ( 9 ): 1757 - 1771 .
FÜRNKRANZ J , HÜLLERMEIER E , MENCÍA E L , et al . Multilabel classification via calibrated label ranking [J ] . Machine Learning , 2008 , 73 ( 2 ): 133 - 153 .
QI G J , HUA X S , RUI Y , et al . Correlative multi-label video annotation [C ] // Proceedings of the 15th International Conference on Multimedia . New York:ACM Press , 2007 : 24 - 29 .
HUANG J , LI G , HUANG Q , et al . Learning label-specific features and class-dependent labels for multi-label classification [J ] . IEEE Transactions on Knowledge and Data Engineering , 2016 , 28 ( 12 ): 3309 - 3323 .
ZHANG Y , YANG Y , LI T , et al . A multitask multiview clustering algorithm in heterogeneous situations based on LLE and LE [J ] . Knowledge-Based Systems , 2019 , 163 ( 1 ): 776 - 786 .
REN Y , ZHANG G , YU G , et al . Local and global structure preserving based feature selection [J ] . Neurocomputing , 2012 , 89 ( 1 ): 147 - 157 .
HUANG R , JIANG W , SUN G . Manifold-based constraint Laplacian score for multi-label feature selection [J ] . Pattern Recognition Letters , 2018 , 112 ( 1 ): 346 - 352 .
XU Y , WANG J , AN S , et al . Semi-supervised multi-label feature selection by preserving feature-label space consistency [C ] // Proceedings of the 27th ACM International Conference on Information and Knowledge Management . New York:ACM Press , 2018 : 783 - 792 .
CHEN G , SONG Y , WANG F , et al . Semi-supervised multi-label learning by solving a Sylvester equation [C ] // Proceedings of the 2008 SIAM International Conference on Data Mining . Saarland:DBLP , 2008 : 410 - 419 .
SHAO R , XU N , GENG X . Multi-label learning with label enhancement [C ] // Proceedings of the 2018 IEEE International Conference on Data Mining . Piscataway:IEEE Press , 2018 : 437 - 446 .
LEE J , KIM D W . SCLS:multi-label feature selection based on scalable criterion for large label set [J ] . Pattern Recognition , 2017 , 66 ( 1 ): 342 - 352 .
CAI X , NIE F P , HUANG H . Exact top-k feature selection via l2,0-norm constraint [C ] // Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence . Palo Alto:AAAI Press , 2013 : 1240 - 1246 .
ZHU Y , KWOK J T , ZHOU Z H . Multi-label learning with global and local label correlation [J ] . IEEE Transactions on Knowledge and Data Engineering , 2018 , 30 ( 6 ): 1081 - 1094 .
YAN H , YANG J , YANG J . Robust joint feature weights learning framework [J ] . IEEE Transactions on Knowledge and Data Engineering , 2016 , 28 ( 5 ): 1327 - 1339 .
DEMPSTER A P , LAIRD N M , RUBIN D B . Maximum likelihood from incomplete data via the EM algorithm [J ] . Journal of the Royal Statistical Society:Series B (Methodological) , 1977 , 39 ( 1 ): 1 - 22 .
LEE D D , SEUNG H S . Algorithms for non-negative matrix factorization [C ] // Proceedings of the Advances in Neural Information Processing Systems . Massachusetts:MIT Press , 2001 : 556 - 562 .
CAI D , HE X , HAN J , et al . Graph regularized nonnegative matrix factorization for data representation [J ] . IEEE Transactions on Pattern Analysis and Machine Intelligence , 2010 , 33 ( 8 ): 1548 - 1560 .
TSOUMAKAS G , SPYROMITROS-XIOUFIS E , VILCEK J , et al . Mulan:a Java library for multi-label learning [J ] . Journal of Machine Learning Research , 2011 , 12 ( 7 ): 2411 - 2414 .
YU K , YU S , TRESP V . Multi-label informed latent semantic indexing [C ] // Proceedings of the 28th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval . New York:ACM Press , 2005 : 258 - 265 .
0
浏览量
630
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构