浏览全部资源
扫码关注微信
西安理工大学计算机科学与工程学院,陕西 西安 710048
[ "王竹荣(1966- ),男,湖南衡阳人,博士,西安理工大学副教授、硕士生导师,主要研究方向为智能计算、深度学习及优化应用等。" ]
[ "薛伟(1993- ),男,陕西韩城人,西安理工大学硕士生,主要研究方向为深度学习与进化计算。" ]
[ "牛亚邦(1993- ),男,山西吕梁人,西安理工大学硕士生,主要研究方向为深度学习。" ]
[ "崔颖安(1975- ),男,陕西西安人,博士,西安理工大学讲师,主要研究方向为社会化媒体大数据抽样与大数据处理。" ]
[ "孙钦东(1975- ),男,山东莒南人,西安理工大学教授、博士生导师,主要研究方向为智能信息处理、网络安全。" ]
[ "黑新宏(1976- ),男,陕西延安人,博士,西安理工大学教授、博士生导师,主要研究方向为智能系统与安全关键系统。" ]
网络出版日期:2020-12,
纸质出版日期:2020-12-25
移动端阅览
王竹荣, 薛伟, 牛亚邦, 等. 基于注意力机制的泊位占有率预测模型研究[J]. 通信学报, 2020,41(12):182-192.
Zhurong WANG, Wei XUE, Yabang NIU, et al. Research on berth occupancy prediction model based on attention mechanism[J]. Journal on communications, 2020, 41(12): 182-192.
王竹荣, 薛伟, 牛亚邦, 等. 基于注意力机制的泊位占有率预测模型研究[J]. 通信学报, 2020,41(12):182-192. DOI: 10.11959/j.issn.1000-436X.2020241.
Zhurong WANG, Wei XUE, Yabang NIU, et al. Research on berth occupancy prediction model based on attention mechanism[J]. Journal on communications, 2020, 41(12): 182-192. DOI: 10.11959/j.issn.1000-436X.2020241.
为解决泊位占有率的预测精度随步长增加而下降的问题,提出了一种基于注意力机制的泊位占有率预测模型。通过卷积神经网络获得多变量的时间模式信息作为模型的注意力机制。通过对模型训练、学习特征信息,并对相关性高的序列分配较大的学习权重,来实现解码器输出高度相关的有用特征预测目标序列。应用多个停车场数据集对模型进行测试,测试结果及对比分析表明,所提模型在步长达到 36 时对泊位占有率的预测数据能较好地估计真实值,预测精度和稳定性相比LSTM均有提高。
To solve the problem that the berth occupancy prediction accuracy decreases while the prediction step was increasing
a berth occupancy prediction model based on an attention mechanism was proposed
which was the multivariate time pattern information obtained by convolutional neural networks (CNN).The characteristic information was learned by the model training
and the sequence with higher correlation was assigned a larger learning weight
so that the highly correlated features output from the decoder could be used to predict the target sequence.Data sets of multiple parking lot were adopted to test the model.The test results show that the proposed model can estimate the real value well when the step length of berth occupancy prediction reaches 36.The prediction accuracy and stability of the model are improved compared with long short-term memory (LSTM) model.
ZHANG J , WANG F Y , WANG K , et al . Data-driven intelligent transportation systems:a survey [J ] . IEEE Transactions on Intelligent Transportation Systems , 2011 , 12 ( 4 ): 1624 - 1639 .
DONALD C S . Cruising for parking [J ] . University of California Transportation Center Working Papers , 2007 , 13 ( 6 ): 479 - 486 .
AYALA D , WOLFSON O , XU B , et al . Pricing of parking for congestion reduction [C ] // Proceedings of the 20th International Conference on Advances in Geographic Information Systems . New York:ACM Press , 2012 : 43 - 51 .
ARORA N , COOK J , KUMAR R , et al . Hard to park? Estimating parking difficulty at scale [C ] // Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining . New York:ACM Press , 2019 : 2296 - 2304 .
RONG Y , XU Z , YAN R , et al . Du-parking:spatio-temporal big data tells you realtime parking availability [C ] // Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery &Data Mining . New York:ACM Press , 2018 : 646 - 654 .
AN D . Method and system for projecting dynamic parking availability based on an ongoing survey for remote lots with high demand:US7049979 [P ] .(2006-05-23)[2020-07-07 ] .
CALISKAN M , BARTHELS A , SCHEUERMANN B , et al . Predicting parking lot occupancy in vehicular ad hoc networks [C ] // 2007 IEEE 65th Vehicular Technology Conference-VTC2007-Spring . Piscataway:IEEE Press , 2007 : 277 - 281 .
CHEN B , PINELLI F , SINN M , et al . Uncertainty in urban mobility:predicting waiting times for shared bicycles and parking lots [C ] // 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013) . Piscataway:IEEE Press , 2013 : 53 - 58 .
RAJABIOUN T , FOSTER B , IOANNOU P . Intelligent parking assist [C ] // 21st Mediterranean Conference on Control and Automation . Piscataway:IEEE Press , 2013 : 1156 - 1161 .
KLAPPENECKER A , LEE H , WELCH J L . Finding available parking spaces made easy [J ] . Ad Hoc Networks , 2014 , 12 : 243 - 249 .
RICHTER F , DI M S , MATTFELD D C . Temporal and spatial clustering for a parking prediction service [C ] // 2014 IEEE 26th International Conference on Tools with Artificial Intelligence . Piscataway:IEEE Press , 2014 : 278 - 282 .
杨兆升 , 陈晓冬 . 智能化停车诱导系统有效停车泊位数据的预测技术研究 [J ] . 交通运输系统工程与信息 , 2003 , 3 ( 4 ): 12 - 15 .
YANG Z S , CHEN X D . Research on the estimation for effective parking space of the intelligentized parking guidance system [J ] . Journal of Transportation System Engineering and Information Technology , 2003 , 3 ( 4 ): 12 - 15 .
陈群 , 晏克非 , 王仁涛 , 等 . 基于相空间重构及 Elman 网络的停车泊位数据预测 [J ] . 同济大学学报 (自然科学版) , 2007 , 35 ( 5 ): 607 - 611 .
CHEN Q , YAN K F , WANG R T , et al . Parking space information prediction based on phrase construction and Elman neural network [J ] . Journal of Tongji University (Natural Science) , 2007 , 35 ( 5 ): 607 - 611 .
BLYTHE P , JI Y , GUO W , et al . Short-term forecasting of available parking space using wavelet neural network model [J ] . IET Intelligent Transport Systems , 2015 , 9 ( 2 ): 202 - 209 .
季彦婕 , 陈晓实 , 王炜 , 等 . 基于小波变换和粒子群小波神经网络组合模型的有效停车泊位短时预测 [J ] . 吉林大学学报(工学版) , 2016 , 46 ( 2 ): 399 - 405 .
JI Y J , CHEN X S , WANG W , et al . Short-term forecasting of parking space using particle swarm optimization-wavelet neural network model [J ] . Journal of Jilin University (Engineering and Technology Edition) , 2016 , 46 ( 2 ): 399 - 405 .
陈海鹏 , 图晓航 , 王玉 , 等 . 基于小波-ELM 神经网络的短期停车泊位预测 [J ] . 吉林大学学报(理学版) , 2017 , 55 ( 2 ): 388 - 392 .
CHEN H P , TU X H , WANG Y , et al . Short-term parking space prediction based on wavelet -ELM neural networks [J ] . Journal of Jilin University(Science Edition) , 2017 , 55 ( 2 ): 388 - 392 .
韩印 , 郑喆 , 赵靖 , 等 . 基于灰色—小波神经网络的有效泊位预测 [J ] . 交通运输系统工程与信息 , 2017 , 17 ( 5 ): 60 - 67 .
HAN Y , ZHENG Z , ZHAO J , et al . Forecasting of effective parking space based on grey-distributed wavelet neural network model [J ] . Journal of Transportation Systems Engineering and Information Technology , 2017 , 17 ( 5 ): 60 - 67 .
GONG G J , AN X N , NAWARAJ K M , et al . Research on short-term load prediction based on seq2seq model [J ] . Energies , 2019 , 12 ( 16 ):3199 ( 1 - 18 ).
RANGAPURAM S S , SEEGER M W , GASTHAUS J , et al . Deep state space models for time series forecasting [C ] // Advances in Neural Information Processing Systems . Massachusetts:MIT Press , 2018 : 7785 - 7794 .
RAN X D , SHAN Z G , FANG Y F , et al . An LSTM-based method with attention mechanism for travel time prediction [J ] . Sensors , 2019 , 19 ( 4 ): 1 - 22 .
FAN C , ZHANG Y , PAN Y , et al . Multi-horizon time series forecasting with temporal attention learning [C ] // Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining . New York:ACM Press , 2019 : 2527 - 2535 .
LAI G , CHANG W C , YANG Y , et al . Modeling long-and short-term temporal patterns with deep neural networks [C ] // The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval . New York:ACM Press , 2018 : 95 - 104 .
SHIH S Y , SUN F K , LEE H . Temporal pattern attention for multivariate time series forecasting [J ] . Machine Learning , 2019 , 108 ( 8-9 ): 1421 - 1441 .
范晓诗 , 雷英杰 , 路艳丽 , 等 . 基于DTW的长期直觉模糊时间序列预测模型 [J ] . 通信学报 , 2016 , 37 ( 8 ): 95 - 104 .
FAN X S , LEI Y J , LU Y L , et al . Long-term intuitionistic fuzzy time series forecasting model based on DTW [J ] . Journal on Communications , 2016 , 37 ( 8 ): 95 - 104 .
王亚男 , 雷英杰 , 雷阳 , 等 . 高阶直觉模糊时间序列预测模型 [J ] . 通信学报 , 2016 , 37 ( 5 ): 115 - 124 .
WANG Y N , LEI Y J , LEI Y , et al . High order intuitionistic fuzzy time series forecasting model [J ] . Journal on Communications , 2016 , 37 ( 5 ): 115 - 124
VASWANI A , SHAZEER N , PARMAR N , et al . Attention is all you need [C ] // Advances in Neural Information Processing Systems . Massachusetts:MIT Press , 2017 : 5998 - 6008 .
LI S , JIN X , XUAN Y , et al . Enhancing the locality and breaking the memory bottleneck of transformer on time series forecasting [C ] // Advances in Neural Information Processing Systems . Massachusetts:MIT Press , 2019 : 5244 - 5254 .
李琳辉 , 周彬 , 连静 , 等 . 基于社会注意力机制的行人轨迹预测方法研究 [J ] . 通信学报 , 2020 , 41 ( 6 ): 175 - 183 .
LI L H , ZHOU B , LIAN J , et al . Research on pedestrian trajectory prediction method based on social attention mechanism [J ] . Journal on Communications , 2020 , 41 ( 6 ): 175 - 183 .
何坚 , 朱喆 , 王伟东 , 等 . 多维时空因果关系学习的停车泊位占用率预测技术 [J ] . 北京工业大学学报 , 2020 , 46 ( 1 ): 17 - 23 .
HE J , ZHU Z , WANG W D , et al . Saliency fusion of multispectral images with non-uniform texture and complex surface defects [J ] . Journal of Beijing University of Technology , 2020 , 46 ( 1 ): 17 - 23 .
梅振宇 , 章伟 . 基于复杂性测度的泊位占有率序列动力学分析 [J ] . 浙江大学学报(工学版) , 2018 , 52 ( 4 ): 727 - 734 , 743 .
MEI Z Y , ZHANG W . Dynamic analysis of parking space occupancy series based on complexity measurement [J ] . Journal of Zhejiang University(Engineering Science) , 2018 , 52 ( 4 ): 727 - 734 , 743 .
HUANG C G , HUANG H Z , LI Y F . A bidirectional LSTM prognostics method under multiple operational conditions [J ] . IEEE Transactions on Industrial Electronics , 2019 , 66 ( 11 ): 8792 - 8802 .
HOCHREITER S , SCHMIDHUBER J . Long short-term memory [J ] . Neural Computation , 1997 , 9 ( 8 ): 1735 - 1780 .
GRAVES A . Supervised sequence labelling with recurrent neural networks [M ] . Berlin : Springer , 2012 .
0
浏览量
585
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构