浏览全部资源
扫码关注微信
1. 信息工程大学网络空间安全学院,河南 郑州 450001
2. 数学工程与先进计算国家重点实验室,河南 郑州 450001
3. 郑州轻工业大学计算机与通信工程学院,河南 郑州 450001
4. 武汉大学国家网络安全学院,湖北 武汉 430075
[ "乔亚琼(1981- ),女,河南开封人,信息工程大学博士生,主要研究方向为数据挖掘和社交网络分析。" ]
[ "罗向阳(1978- ),男,湖北荆门人,博士,信息工程大学教授、博士生导师,主要研究方向为网络与信息安全。" ]
[ "马江涛(1981- ),男,河南开封人,博士,郑州轻工业大学讲师,主要研究方向为数据挖掘和社交网络分析。" ]
[ "李晨亮(1983- ),男,湖北武汉人,博士,武汉大学副教授,主要研究方向为数据挖掘、机器学习、社交网络分析、信息安全、信息检索、文本/网络挖掘和自然语言处理。" ]
[ "张萌(1996- ),女,河南偃师人,信息工程大学博士生,主要研究方向为数据挖掘和社交网络分析。" ]
[ "李瑞祥(1994- ),男,湖南衡阳人,信息工程大学博士生,主要研究方向为网络实体定位、数据分析和信息安全。" ]
网络出版日期:2020-12,
纸质出版日期:2020-12-25
移动端阅览
乔亚琼, 罗向阳, 马江涛, 等. 基于多种提及关系的社交媒体用户位置推断[J]. 通信学报, 2020,41(12):72-81.
Yaqiong QIAO, Xiangyang LUO, Jiangtao MA, et al. Social media user geolocalization based on multiple mention relationships[J]. Journal on communications, 2020, 41(12): 72-81.
乔亚琼, 罗向阳, 马江涛, 等. 基于多种提及关系的社交媒体用户位置推断[J]. 通信学报, 2020,41(12):72-81. DOI: 10.11959/j.issn.1000-436X.2020229.
Yaqiong QIAO, Xiangyang LUO, Jiangtao MA, et al. Social media user geolocalization based on multiple mention relationships[J]. Journal on communications, 2020, 41(12): 72-81. DOI: 10.11959/j.issn.1000-436X.2020229.
针对现有基于生成文本和社交关系的联合位置推断方法对社交媒体中异质数据间的位置关联性挖掘不充分的问题,提出了一种基于多种提及关系的社交媒体用户位置推断方法。首先,综合考虑社交媒体文本中用户之间的提及关系、用户对位置指示词的提及关系和用户对地理名词的提及关系,构建包含用户、位置指示词和地理名词3种节点的异质网络;其次,基于共同提及关系提出用户-词语-位置简化算法来构建用户-位置异质网络,将位置邻近的用户更为紧密地联系起来;再次,提出有偏的随机游走算法对图中节点采样以充分探索网络结构,缓解已知位置的稀疏性问题;最后,采用基于多层感知机的神经网络分类器对用户进行位置推断。在 GEOTEXT、TW-US 和TW-WORLD这3个代表性Twitter数据集上的实验结果表明,所提方法可显著提高用户位置推断准确率。
Aiming at the problem that the existing joint user geolocalization methods based on social media text and social relationships do not sufficiently mine the location correlation between heterogeneous data in social media
a social media user geolocalization method based on multiple mention relationships was proposed.First
a heterogeneous network was constructed by comprehensively considering the mention relationship between users
the user's mention relationship with location indicative words
and the user's mention relationship with geographic nouns.Then
a network simplification strategy was proposed to construct a user-location heterogeneous network that connects users live nearby more closely based on the common mention relationship.After that
a biased random walk algorithm was proposed for the graph node sampling to fully explore the network structure and alleviate the sparsity problem of known locations.Finally
a neural network classifier based on a multilayer perceptron was used to infer the user's location.Experimental results on three representative Twitter data sets of GEOTEXT
TW-US and TW-WORLD show that the proposed method can significantly improve the user geolocalization accuracy.
KAWANAKA S , MORIWAKI D . Uplift modeling for location-based online advertising [C ] // Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Location-based Recommendations,Geosocial Networks and Geoadvertising . New York:ACM Press , 2019 : 1 - 4 .
SHAHRAKI Z K , FATEMI A , MALAZI H T . Evidential fine-grained event localization using Twitter [J ] . Information Processing & Management , 2019 , 55 ( 6 ): 102045 .1-102045.20
ZHOU N , ZHAO W X , ZHANG X , et al . A general multi-context embedding model for mining human trajectory data [J ] . IEEE Transactions on Knowledge & Data Engineering , 2016 , 28 ( 8 ): 1945 - 1958 .
张文静 , 刘樵 , 朱辉 , 等 . 基于信息论方法的多等级位置隐私度量与保护 [J ] . 通信学报 , 2019 , 40 ( 12 ): 51 - 59 .
ZHANG W J , LIU Q , ZHU H , et al . Evaluation and protection of mul-ti-level location privacy based on an information theoretic approach [J ] . Journal on Communications , 2019 , 40 ( 12 ): 51 - 59 .
李维皓 , 曹进 , 李晖 , 等 . 基于位置服务隐私自关联的隐私保护方案 [J ] . 通信学报 , 2019 , 40 ( 5 ): 57 - 66 .
LI W H , CAO J , LI H , et al . Privacy self-correlation privacy-preserving scheme in LBS [J ] . Journal on Communications , 2019 , 40 ( 5 ): 57 - 66 .
POULSTON A , STEVENSON M , BONTCHEVA K . Hyperlocal home location identification of Twitter profiles [C ] // Proceedings of the 28th ACM Conference on Hypertext and Social Media . New York:ACM Press , 2017 : 45 - 54 .
EISENSTEIN J , O’CONNOR B , SMITH N A , et al . A latent variable model for geographic lexical variation [C ] // Proceedings of the 2010 Conference on Empirical Methods in Natural Language Processing . Stroudsburg:Association for Computational Linguistics , 2010 : 1277 - 1287 .
AHMED A , HONG L , SMOLA A J . Hierarchical geographical modeling of user locations from social media posts [C ] // Proceedings of the 22nd International World Wide Web Conference . New York:ACM Press , 2013 : 25 - 36 .
WING B , BALDRIDGE J . Hierarchical discriminative classification for text-based geolocation [C ] // Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing . Stroudsburg:Association for Computational Linguistics , 2014 : 336 - 348 .
SCHULZ A , HADJAKOS A , PAULHEIM H , et al . A multi-indicator approach for geolocalization of tweets [C ] // Proceedings of the Seventh International Conference on Weblogs and Social Media . Palo Alto:AAAI Press , 2013 : 573 - 582 .
RAHIMI A , VU D , COHN T , et al . Exploiting text and network context for geolocation of social media users [C ] // The 2015 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies . Stroudsburg:Association for Computational Linguistics , 2015 : 1362 - 1367 .
RAHIMI A , COHN T , BALDWIN T . A neural model for user geolocation and lexical dialectology [C ] // Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics . Stroudsburg:Association for Computational Linguistics , 2017 , 2 : 209 - 216 .
JURGENS D , . That’s what friends are for:inferring location in online social media platforms based on social relationships [C ] // Proceedings of the Seventh International Conference on Weblogs and Social Media . Palo Alto:AAAI Press , 2013 : 273 - 282 .
RAHIMI A , COHN T , BALDWIN T . Twitter user geolocation using a unified text and network prediction model [C ] // Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing of the Asian Federation of Natural Language Processing . Stroudsburg:Association for Computational Linguistics , 2015 : 630 - 636 .
RAHIMI A , COHN T , BALDWIN T . Semi-supervised user geolocation via graph convolutional networks [C ] // Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics . Stroudsburg:Association for Computational Linguistics , 2018 , 1 ( 1 ): 2009 - 2019 .
DO T H , NGUYEN D M , TSILIGIANNI E , et al . Twitter user geolocation using deep multiview learning [C ] // 2018 IEEE International Conference on Acoustics,Speech and Signal Processing . Piscataway:IEEE Press , 2018 : 6304 - 6308 .
ZHONG T , WANG T , WANG J , et al . Multiple-aspect attentional graph neural networks for online social network user localization [J ] . IEEE Access , 2020 , 8 : 95223 - 95234 .
ROLLER S , SPERIOSU M , RALLAPALLI S , et al . Supervised text-based geolocation using language models on an adaptive grid [C ] // Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning . Stroudsburg:Association for Computational Linguistics , 2012 : 1500 - 1510 .
HAN B , COOK P , BALDWIN T . Text-based twitter user geolocation prediction [J ] . Journal of Artificial Intelligence Research , 2014 , 49 ( 1 ): 451 - 500 .
KRISHNAMURTHY R . Knowledge enabled location prediction of Twitter users [D ] . Dayton:Wright State University , 2015 .
CHENG Z , CAVERLEE J , LEE K . You are where you tweet:a content-based approach to geo-locating twitter users [C ] // Proceedings of the 19th ACM Conference on Information and Knowledge Management . New York:ACM Press , 2010 : 759 - 768 .
ZHENG X , HAN J , SUN A . A survey of location prediction on Twitter [J ] . IEEE Transactions on Knowledge & Data Engineering , 2018 , 30 ( 9 ): 1652 - 1671 .
WING B , BALDRIDGE J . Simple supervised document geolocation with geodesic grids [C ] // Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies . Stroudsburg:Association for Computational Linguistics , 2011 : 955 - 964 .
GROVER A , LESKOVEC J . Node2Vec:scalable feature learning for networks [C ] // Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . New York:ACM Press , 2016 : 855 - 864 .
MIKOLOV T , SUTSKEVER I , CHEN K , et al . Distributed representations of words and phrases and their compositionality [J ] . Advances in Neural Information Processing Systems , 2013 , 26 ( 2 ): 3111 - 3119 .
NAIR V , HINTON G E . Rectified linear units improve restricted boltzmann machines vinod nair [C ] // Proceedings of the 27th International Conference on Machine Learning . Madison:Omni Press , 2010 , 807 - 814 .
AL-RFOU R , ALAIN G , ALMAHAIRI A , et al . Theano:a Python framework for fast computation of mathematical expressions [J ] . arXiv e-prints,1605.02688 , 2016 : 1 - 19 .
KINGMA D P , BA J . Adam:a method for stochastic optimization [J ] . arXiv Preprint,arXiv:1412.6980 , 2014 .
HAN B , COOK P , BALDWIN T . Geolocation Prediction in Social Media Data by Finding Location Indicative Words [C ] // Proceedings of the 24th International Conference on Computational Linguistics . Mumbai:The COLING 2012 Organizing Committee , 2012 : 1045 - 1062 .
0
浏览量
308
下载量
0
CSCD
关联资源
相关文章
相关作者
相关机构