ZHU Tie-jun 1, LIN Ya-ping1, ZHOU Si-wang2, et al. Adaptive multiple-modalities data compression algorithm using wavelet for wireless sensor networks[J]. 2009, 30(3): 48-53.
ZHU Tie-jun 1, LIN Ya-ping1, ZHOU Si-wang2, et al. Adaptive multiple-modalities data compression algorithm using wavelet for wireless sensor networks[J]. 2009, 30(3): 48-53.DOI:
无线传感器网络中基于小波的自适应多模数据压缩算法
摘要
基于数据的多模性
设计了一个基于小波的自适应多模数据压缩算法。在给定的相关度阈值的条件下
算法能自适应地对数据调整分类
对相关数据采用最小二乘估计进行拟合
把特征数据抽象成一个矩阵
利用小波变换去除数据的空间和时间相关性。理论分析和仿真实验表明
新算法能够有效地去除数据之间的多模相关性和同种数据的空间和时间相关性
新算法有效地提高了压缩比
降低了网络的能耗。
Abstract
Wireless sensor networks usually have limited resources
such as energy
bandwidth and processing and so on.And they can’t match the transmission of a large number of data.So
it is necessary to perform in-network compression of the raw data sampled by sensors.The data sensor node collected normally have multiple-modalities pertinence.Multiple-modalities pertinence refers to the different types of data which the same node sampled have some correlation.A adaptive multiple-modalities data compression algorithm using wavelet was designed.In a given threshold of the correlation
the data can be adaptive classified using this algorithm.the relevant data can be estimated using the least square estimation.The characteristics data are abstracted as a matrix
then can be exploited the spatial and temporal corrections using wavelet transform.Theoretically and experimentally
the proposed algorithm can effectively exploit the correlation of the data
the compression ratio of the algorithm has improved.Effectively
it can provide a significant reduction in energy consumption.