LI Jian1, JING Bo2, NIU Shao-zhang1, et al. Model for virtual corporations partner selection based on adaptive genetic algorithm[J]. 2009, 30(8): 78-83.
LI Jian1, JING Bo2, NIU Shao-zhang1, et al. Model for virtual corporations partner selection based on adaptive genetic algorithm[J]. 2009, 30(8): 78-83.DOI:
基于自适应遗传算法的企业动态联盟伙伴选择模型
摘要
为了提高动态联盟中企业选择联盟伙伴和优化过程中的效率
提出了一种基于自适应遗传算法的企业动态联盟伙伴选择模型。将自适应遗传算法AGA应用于这种模型当中
以提高模型中企业选择联盟伙伴和优化过程中的效率。AGA相对于标准遗传算法SGA在求解问题的时候
可以很好地处理SGA中容易造成的早熟和局部收敛现象。在实验中
分别对2种遗传算法即:SGA和AGA各进行了1000次的实验。结果表明同样找到最优解的时候
SGA平均需要166次
而AGA平均仅需要145次。这个结果说明
在企业选择联盟伙伴和优化的时候
AGA可以使得企业高效找到最优的联盟伙伴。
Abstract
To enhance the efficiency of corporation partner selection and optimization process in virtual corporations
an partner selection process and optimizations model for virtual corporations based on adaptive genetic algorithm were pre-sented. In the model
the adaptive genetic algorithm was used to enhance the efficiency of corporation partner selection and optimization process. The AGA could solve the problem of prematurity and local convergence more compatibly than SGA. In the experiments
two kinds of genetic algorithms were used to be compared with
which were standard genetic algo-rithm(SGA) and adaptive genetic algorithm(AGA). After 1 000 times of experiments to gain the optimal result
SGA aver-agely needed 166 runs
while the AGA averagely only needed 145 runs. The experimental results show that the AGA can gain the optimal result more efficiently than SGA in corporation partner selection and optimization process.