浏览全部资源
扫码关注微信
哈尔滨工程大学信息安全研究中心
纸质出版日期:2011
移动端阅览
李志东, 杨武, 王巍, 等. 多源入侵检测警报的决策级融合模型[J]. 通信学报, 2011,32(5):121-128.
LI Zhi-dong, YANG Wu, WANG Wei, et al. Decision-level fusion model of multi-source intrusion detection alerts[J]. 2011, 32(5): 121-128.
李志东, 杨武, 王巍, 等. 多源入侵检测警报的决策级融合模型[J]. 通信学报, 2011,32(5):121-128. DOI:
LI Zhi-dong, YANG Wu, WANG Wei, et al. Decision-level fusion model of multi-source intrusion detection alerts[J]. 2011, 32(5): 121-128. DOI:
为了大幅降低对训练样本的要求
摒弃苛刻的约束条件
提出了一种支持在线增量训练的警报融合模型。将初级警报向量映射为表决模式
以缩小统计空间。通过训练统计出各种表决模式在正常或攻击流量下的条件概率分布
依据统计特征的变化即时推断待检测流量的构成情况
使用阈值约束法和贝叶斯推断做出融合决策。从而拓展了适用范围
并且能较好地跟踪适应待检测流量
仅需少量训练样本便可显著提升检测性能。
In order to lessen the dependence on training samples significantly and eliminate rigorous constraint conditions
an alert fusion model that supports online incremental training was presented.Firstly
primary alerts vector was mapped to voting pattern
so as to reduce statistical space.Then
the conditional probability distributions of various voting patterns in normal or attack traffic were inferred via training.Afterwards
according to the variation of statistical characteristics
the composition of the traffic being detected was inferred instantly.Finally
fusion decision was made via threshold constraint method and Bayesian inference.Besides extended applicative scope
the model proposed can track and adapt to the traffic being detected well
and improve detection performance significantly only via small scale training.
0
浏览量
270
下载量
10
CSCD
关联资源
相关文章
相关作者
相关机构