YUAN Dong-hui1, LIU Da-you1, SHEN Shi-qun1. Improved AC-GA based data association method for multi-target tracking[J]. 2011, 32(6): 17-23.DOI:
基于蚁群—遗传算法的改进多目标数据关联方法
摘要
将蚁群算法与遗传算法相结合
提出一种快速实现多目标数据关联的AC-GADA(ant colony-genetic algo-rithm data association)算法
该算法利用种群个体携带信息素
并改进了全局信息素扩散模型
同时为了提高算法的收敛速度并且避免局部极值的出现
引入了交叉变异策略和种群适应度模型
通过大量的实验数据证明
该算法在获得较高关联准确率的同时可以有效地提高关联速度。
Abstract
An AC-GADA(ant colony-genetic algorithm data association) algorithm was proposed to deal with the data as-sociation problem for multi-target tracking.This algorithm designed difference pheromone for each ant and improved global pheromone increment model
and combined crossover and mutation strategy with fitness of population model in or-der to improve rate of convergence and avoid the appearance of local extremum.The comparison with ACDA(ant colony data association) and JPAD(joint pobabilistic data association) proved its efficiency and superiority.